# Functional Analysis Problem Set 

V. M. Sholapurkar

1. Show that the space $l_{0}$ of complex sequences with at most finitely many non-zero terms is not closed in $l^{2}$.
2. Construct an infinite dimensional space with two non-equivalent norms on it.
3. In $C[0,1]$, consider the functional $F(x)=\int_{0}^{1} x(t) f(t) d t$, where $f$ is continuous. Find $\|F\|$.
4. Justify whether true or false : The closed unit ball in $l^{p}$ is totally bounded.
5. Prove that the space $l^{\infty}$ is not separable.
6. Show that the spaces $c_{0}, c, l^{1}, l^{\infty}$ are not reflexive.
7. If $X$ has finite measure and $p<q$, then prove that $L^{q}(X) \subset L^{p}(X)$.
8. If $f \in L^{\infty}$ is supported on a set of finite, then prove that $f \in L^{p}$ for $p<\infty$.
9. Justify whether true or false: For $f \in X^{*},\|f\|=1$, ther exists $x \in X$ such that $\|x\|=1$ and $f(x)=1$.
10. Let $E$ be a measurable subset of $\mathbb{R}^{n}$. Show that it is not true that $m(E)=\sup \left\{m(U): U \subset E, U\right.$ open in $\left.\mathbb{R}^{n}\right\}$.
11. Show that the Lebesgue measure is invariant under rotation and reflection.
[^0]
[^0]:    Instructional School for Teachers at IIT, Kanpur, May, 2015

