Functional Analysis Problem Set

V. M. Sholapurkar

- 1. Show that the space l_0 of complex sequences with at most finitely many non-zero terms is not closed in l^2 .
- 2. Construct an infinite dimensional space with two non-equivalent norms on it.
- 3. In C[0,1], consider the functional $F(x) = \int_0^1 x(t)f(t)dt$, where f is continuous. Find ||F||.
- 4. Justify whether *true* or *false* : The closed unit ball in l^p is totally bounded.
- 5. Prove that the space l^{∞} is not separable.
- 6. Show that the spaces c_0, c, l^1, l^∞ are not reflexive.
- 7. If X has finite measure and p < q, then prove that $L^q(X) \subset L^p(X)$.
- 8. If $f \in L^{\infty}$ is supported on a set of finite, then prove that $f \in L^p$ for $p < \infty$.
- 9. Justify whether *true* or *false*: For $f \in X^*$, ||f|| = 1, ther exists $x \in X$ such that ||x|| = 1 and f(x) = 1.
- 10. Let *E* be a measurable subset of \mathbb{R}^n . Show that it is not true that $m(E) = \sup\{m(U) : U \subset E, U \text{ open in } \mathbb{R}^n\}.$
- 11. Show that the Lebesgue measure is invariant under rotation and reflection.

Instructional School for Teachers at IIT, Kanpur, May, 2015